Lecture: Corporate and Personal Income Tax

Lutz Kruschwitz & Andreas Löffler

Discounted Cash Flow, Section 5

Remark: The slightly expanded second edition (Springer, open access) has different enumeration than the first (Wiley). We use Springer's enumeration in the slides and Wiley's in the videos.

Outline

Assumptions

Levered and unlevered firm Corporate and personal tax $\,$

Tax shield

Valuation result

Again we have an unlevered firm (self-financed, distributing its cash flows fully) and a levered firm (indebted, partial retention of cash flows). The levered firm lives for ever. For simplicity we will assume for the levered firm

- ▶ that debt *D* remains constant, and
- that a constant amount A is retained every period.

We consider a corporate and a personal income tax.

The **corporate tax** is measured by the company's profit. The tax rate is τ^C and independent of time. Taking out loans at time t-1 provides a tax advantage equal to $\tau^C \widetilde{I}_t$.

The **personal tax** is measured by the paid dividend (tax rate τ^D) and the paid interest as well (tax rate τ^I). Again, the tax is linear and independent of time. If \widetilde{A}_t is retained this amount creates a tax advantage.

Consider a shareholder of a company that tries to distribute its profit. The tax authorities might have access to the profit twice:

profit

- ▶ Profits are taxed twice (double taxation or classical system).
- ► The tax authority can accept that the corporate income tax is considered as a first installment (indirect relief or imputation system).
- Both systems can be mixed.

We will consider a classical system from now on. Several papers deal with other models of taxation.

From pre-tax gross cash flows to post-tax free cash flows 5

	Gross cash flow before taxes	$\widetilde{\mathit{GCF}}_t$
_	Corporate income taxes	$\widetilde{\mathit{Tax}}_t^{\mathit{C}}$
_	Investment expenses	$\widetilde{\mathit{Inv}}_t$
_	Interest (creditor's taxable income)	$\widetilde{I_t}$
_	Debt repayments	$-\widetilde{D}_t + \widetilde{D}_{t-1}$
_	Retained earnings	\widetilde{A}_t
+	Reflux from retained earnings	$(1+\widetilde{r}_{t-1})\widetilde{A}_{t-1}$
_	Shareholder's personal income tax	$\widetilde{\mathit{Tax}}_t^P$
=	Shareholder's levered post-tax cash flow	$\widetilde{FCF}_{\star}^{1}$

For the levered as well as the unlevered firm

$$\widetilde{\mathit{FCF}}_t = \widetilde{\mathit{GCF}}_t - \widetilde{\mathit{Tax}_t^{\mathsf{C}}} - \widetilde{\mathit{Inv}}_t - \widetilde{\mathit{Tax}_t^{\mathsf{P}}} \,.$$

That implies for the tax shield,

$$\begin{split} \widetilde{\mathit{FCF}}_t^l &= \widetilde{\mathit{FCF}}_t^u - \widetilde{\mathit{I}}_t + \widetilde{\mathit{D}}_t - \widetilde{\mathit{D}}_{t-1} - \widetilde{\mathit{A}}_t + (1 + \widetilde{\mathit{r}}_{t-1})\widetilde{\mathit{A}}_{t-1} \\ &+ \widetilde{\mathit{Tax}}_t^{\mathit{C},\mathit{u}} - \widetilde{\mathit{Tax}}_t^{\mathit{C},\mathit{l}} + \widetilde{\mathit{Tax}}_t^{\mathit{P},\mathit{u}} - \widetilde{\mathit{Tax}}_t^{\mathit{P},\mathit{l}}. \end{split}$$

Let us now turn to the tax base of the corporate as well as the personal income tax.

For the corporate income tax

$$\begin{split} \widetilde{Tax}_{t}^{C,l} &= \tau^{C} \widetilde{EBT}_{t}^{l} \\ &= \tau^{C} \left(\widetilde{EBT}_{t}^{u} - r_{f}D + \widetilde{r}_{t-1}A \right) \\ &= \widetilde{Tax}_{t}^{C,u} - \tau^{C} r_{f}D + \tau^{C} \widetilde{r}_{t-1}A \end{split}$$

and for the personal income tax

$$\begin{split} \widetilde{\mathit{Tax}}_{t}^{P,I} &= \widetilde{\mathit{Tax}}_{t}^{P,u} - \tau^{I} r_{f} D + \tau^{D} \widetilde{r}_{t-1} A + \tau^{I} \tau^{C} r_{f} D - \tau^{D} \tau^{C} \widetilde{r}_{t-1} A \\ &= \widetilde{\mathit{Tax}}_{t}^{P,u} - \tau^{I} \left(1 - \tau^{C} \right) r_{f} D + \tau^{D} \left(1 - \tau^{C} \right) \widetilde{r}_{t-1} A \,. \end{split}$$

We have

$$\begin{split} \widetilde{FCF}_{t}^{l} &= \widetilde{FCF}_{t}^{u} - r_{f}D + \widetilde{r}_{t-1}A + \widetilde{Tax}^{C,u} - \widetilde{Tax}^{C,l} + \widetilde{Tax}^{P,u} - \widetilde{Tax}^{P,l} \\ &= \widetilde{FCF}_{t}^{u} - \left(1 - \tau^{l}\right)\left(1 - \tau^{C}\right)r_{f}D + \left(1 - \tau^{D}\right)\left(1 - \tau^{C}\right)\widetilde{r}_{t-1}A \end{split}$$

which gives

$$\begin{split} \mathsf{E}_{Q}\left[\widetilde{\mathit{FCF}}_{t}^{l}|\mathcal{F}_{t-1}\right] &= \mathsf{E}_{Q}\left[\widetilde{\mathit{FCF}}_{t}^{u}|\mathcal{F}_{t-1}\right] + \left(1 - \tau^{D}\right)\left(1 - \tau^{C}\right)r_{f}A \\ &- \left(1 - \tau^{I}\right)\left(1 - \tau^{C}\right)r_{f}D \;. \end{split}$$

Using our fundamental theorem we get

$$\begin{split} \widetilde{V}_{t}^{l} &= \widetilde{V}_{t}^{u} + D + \sum_{s=t+1}^{\infty} \frac{\mathbb{E}_{Q} \left[\left(1 - \tau^{D} \right) \left(1 - \tau^{C} \right) r_{f} A - \left(1 - \tau^{I} \right) \left(1 - \tau^{C} \right) r_{f} D | \mathcal{F}_{t} \right]}{\left(1 + r_{f} \left(1 - \tau^{I} \right) \right)^{s-t}} \\ &= \widetilde{V}_{t}^{u} + D + \sum_{s=t+1}^{\infty} \frac{\left(1 - \tau^{D} \right) \left(1 - \tau^{C} \right)}{\left(1 + r_{f} \left(1 - \tau^{I} \right) \right)^{s-t}} r_{f} A - \sum_{s=t+1}^{\infty} \frac{\left(1 - \tau^{I} \right) \left(1 - \tau^{C} \right)}{\left(1 + r_{f} \left(1 - \tau^{I} \right) \right)^{s-t}} r_{f} D \\ &= \widetilde{V}_{t}^{u} + D + \frac{\left(1 - \tau^{D} \right) \left(1 - \tau^{C} \right)}{r_{f} \left(1 - \tau^{I} \right)} r_{f} A - \frac{\left(1 - \tau^{I} \right) \left(1 - \tau^{C} \right)}{r_{f} \left(1 - \tau^{I} \right)} r_{f} D \\ &= \widetilde{V}_{t}^{u} + \frac{\left(1 - \tau^{D} \right) \left(1 - \tau^{C} \right)}{1 - \tau^{I}} A + \tau^{C} D , \end{split}$$

which is a generalization of Modigliani-Miller.

