Lecture: Basic Elements

Lutz Kruschwitz & Andreas Löffler

Discounted Cash Flow, Section 1.1
Outline

Introduction
 DCF
 The predecessors
1.1 Fundamental terms
 1.1.1 Cash flows
 1.1.2 Taxes
 1.1.3 Cost of capital
 1.1.4 Time

Summary
DCF is short for discounted cash flow. A Theory of the Valuation of Firms

Lutz Kruschwitz and Andreas Löffler

Introduction, DCF
Irving Fisher (1867–1947)

Fisher is one of the earliest American Neoclassicals. He studied Mathematics, Social Science and Philosophy. 1892 Professor at Yale.
Modigliani was born in Italy, moved to USA in 1939. 1962 Professor at Massachusetts Institute of Technology. 1985 Nobel Laureate in Economics.
Merton H. Miller (1923–2000)

1961 Professor at University of Chicago. 1990 Nobel Laureate in Economics.
Aims of the book

1. To put **taxes and uncertainty together** into one model and
2. To give **precise formal definitions** of several concepts such as
 - cash flows (gross, net, free, ...?)
 - taxes (firm income, personal income or both, ...?)
 - cost of capital (discount rates, returns, ...?)
3. While **maintaining** the following **principles**:
 - no free lunch (goes back to Modigliani–Miller!)
 - no revelation of stochastic structure of future cash flows.

1.1 Fundamental terms,
Valuation based on discounted cash flow (DCF) involves discounting

- of future payment surpluses
- after consideration of taxes
- using appropriate cost of capital.
What matters are future cash flows.

But, the question of how to forecast cash flows will not be considered here,

nor the question of how to derive cash flows from balance sheets.

Furthermore, the investment policy (expansion and replacement investments) will be given.
EBIT, gross and free cash flows

1.1 Fundamental terms, 1.1.1 Cash flows

<table>
<thead>
<tr>
<th>EBIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Accruals</td>
</tr>
<tr>
<td>= Gross cash flows before taxes</td>
</tr>
<tr>
<td>− Corporate income taxes</td>
</tr>
<tr>
<td>− Investment expenses</td>
</tr>
<tr>
<td>= Free cash flow</td>
</tr>
<tr>
<td>− Interest, debt service</td>
</tr>
<tr>
<td>− dividends, capital reduction</td>
</tr>
<tr>
<td>= Zero</td>
</tr>
</tbody>
</table>
We consider two different types of income tax:

- Corporate income tax (Chapter 2).
- Personal income tax (Chapter 3).

Value-based and sales taxes are ignored.
The characteristics of a tax

Characteristics are

- the tax subject (who?)
- the tax object (why?)
- the tax due (how much?), which is a product of the tax base and a linear tax scale.

Notice that in our model the tax rate is deterministic.
It is obvious what the cost of capital is in a one-period context. In a multi-period context there are at least three different notions of this concept: cost of capital can be

- returns,
- discount rates, or
- yields.

How now?
First, let us ignore uncertainty.

Notation:

- FCF: firm’s free cash flow
- V: value of the firm

Idea:

Cost of capital is used for **discounting** (we are very loose here), hence

$$V_0 = \frac{FCF_1}{1 + k_0} + \frac{FCF_2}{(1 + k_0)(1 + k_1)} + \ldots$$
This idea shall also be applied in the future: at $t = 1$ we want to have

\[V_1 = \frac{FCF_2}{1 + k_1} + \frac{FCF_3}{(1 + k_1)(1 + k_2)} + \ldots \]

where k_1 is the same cost of capital from the last slide!
Then the definition of cost of capital should run

\[k_t = \text{Def} \frac{FCF_{t+1} + V_{t+1}}{V_t} - 1 \]

Implication: Costs of capital are inevitably (expected) returns.
A different approach could be

\[V_0 = \frac{FCF_1}{1 + k_0} + \frac{FCF_2}{(1 + k_1)^2} + \ldots \]

but then \(\Rightarrow \) \[V_1 = \frac{FCF_2}{1 + k_1} + \frac{FCF_3}{(1 + k_2)^2} + \ldots \]

Here the costs of capital are **yields**. We do not think much along this course (this is a different concept), because it is difficult to observe yields empirically.
You pay at time t a price $P_{t,s}$ for cash flow FCF_s due at s:

\[P_{t,s} \quad FCF_s \]

We would then define a discount rate as

\[P_{t,s} = \text{Def} \quad \frac{FCF_s}{(1 + \kappa_{t,s})^{s-t}} \]

What relation exists between these discount rates and (expected) returns (=cost of capital)?

Will be understood later...
Different notions of time

discrete (easy to handle)

continuous (elegant, but laborious)

Time horizon

- finite

- infinite: Here we assume transversality, which is equivalent to saying ‘nothing strange happens when $T \to \infty$’.
Valuation requires knowledge of
 – free cash flows,
 – taxes,
 – cost of capital.

Costs of capital are returns, not yields.